skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matthes, Jaclyn_Hatala"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ecosystem models offer a rigorous way to formalize scientific theories and are critical to evaluating complex interactions among ecological and biogeochemical processes. In addition to simulation and prediction, ecosystem models are a valuable tool for testing hypotheses about mechanisms and empirical findings because they reveal critical internal processes that are difficult to observe directly.However, many ecosystem models are difficult to manage and apply by scientists because of complex model structures, lack of consistent documentation, and low‐level programming implementation.Here, we present the ‘pnetr’ R package, which is designed to provide an easy‐to‐manage ecosystem modelling framework and detailed documentation in both model structure and programming. The framework implements a family of widely used PnET (net photosynthesis, evapotranspiration) ecosystem models, which are relatively parsimonious but capture essential biogeochemical cycles of water, carbon and nitrogen. We chose the R programming language because it is familiar to many ecologists and has abundant statistical modelling resources. We showcase examples of model simulations and test the effects of phenology on carbon assimilation and wood production using data measured by the Environmental Measurement Station (EMS) eddy‐covariance flux tower at Harvard Forest, MA.We hope ‘pnetr’ can facilitate further development of ecological theory and increase the accessibility of ecosystem modelling and ecological forecasting. 
    more » « less
  2. Abstract Global change has created less stable forest systems and given urgency to understanding limitations to the establishment of tree seedlings beyond current range boundaries. We quantified trends in 13 years of annual northern red oak (QURU) seedling survival data for 1733 marked individuals at a local species distribution boundary within the northern hardwood forest in New Hampshire, USA. Over the study period, the median distance of seedlings into the valley did not change, although there was a net gain of 89 plots (5 m2) occupied. For a subset of seedlings that were marked in their year of birth (N = 937), we examined relationships among terrain, vegetation community, and initial individual seedling traits, and evaluated their effects on time to seedling mortality using a parametric accelerated failure time model. The year of seedling germination had the largest effect on survival with increasing mortality rates for seedlings from more recent cohorts. Seedlings had longer survival times where oak seedling densities were lower, shrub cover was higher, and when the acorn remained attached. Additionally, survival time was increased in higher elevation plots, which were also located further into the valley. Interannual seedling survival (N = 1580) was strongly impacted by seedling condition in the previous year, particularly leaf number and amount of leaf damage. Most seedling deaths occurred over winter, and seedlings failed to break bud the following spring. Interannual variation in seasonal climate, particularly deep, heavy snowpack in 2019 followed by drought conditions in 2020, coincided with recent elevated mortality. Overall, the median survival time of 3–4 years and the rapid turnover of the oak seedling population currently limit ability for expansion, although the net gain of occupied plots and increase in survival at higher elevation plots with lower QURU densities present some mechanisms that could promote expansion if the current suboptimal understory conditions shift to favor QURU. 
    more » « less